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1. Introduction and Summary

This report covers work performed by Science Applications International Corporation

(SAIC) under contract NAS8-39386 from the NASA Marshall Space Flight Center entitled "LDEF

Satellite Radiation Analyses". The basic objective of the study was to evaluate the accuracy of

present models and computational methods for defining the ionizing radiation environment for

spacecraft in low Earth orbit (LEO) by making comparisons with radiation measurements made on

the Long Duration Exposure Facility (LDEF) satellite, which was recovered after almost six years

in space.

1.1 Scope

The emphasis of the work here is on predictions and comparisons with LDEF

measurements of induced radioactivity and linear energy transfer (LET) measurements. These

model/data comparisons have been used to evaluate the accuracy of current models for predicting

the flux and directionality of trapped protons for LEO missions.

1.2 Publications

Most of the results from work on this contract have been described previously in

publications and presentations. These are summarized in Table 1 together with earlier SAIC

publications on SAIC analyses related to LDEF.

1.3 Organization of Report and Major Findings

LDEF 3-D Mass Model : Work on developing a 3-D mass model of the LDEF spacecraft and

experiment payloads for radiation calculations was performed previous to the current contract

effort. However, some additional work on verifying the model was performed under the present

contract as discussed in Sec. 2.

Trapped Proton Anisotropy: Calculations of the activation of LDEF tray clamps and comparisons

with measurements are given in Sec 3. These LDEF measurements are used to check model

predictions of the trapped proton anisotropy.

Trapped Proton Flux: Model predictions of the trapped proton flux have been used to compare

with several different types of LDEF data (absorbed dose, several sets of activation data, and

fission foil measurements), as summarized in Sec. 4. Details of the model calculations and
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comparisonswith activationmeasurementsfor metalsamplesplacedon LDEF are included as

AppendixA.

LET Spectra: Section 5 summarizes model calculations and comparisons with LET spectra

measured on LDEF. The emphasis of this work is on Monte Carlo calculations and LDEF data

comparisons for the high-LET part of the spectrum due to recoil particles from proton-nucleus

interactions (target fragments). Results of additional LET calculations are given in Appendix B.

References: A bibliography of SAIC contributions to LDEF radiation analyses and model

validation calculations is given in Sec. 6; other references are given in Sec 7.



2. LDEF Mass Model Verification

Work on development of a detailed, three-dimensional mass model of LDEF for radiation

analyses has been described previously /15,20,29/. Under the present effort an additional

verification of the model was made as described below.

The LDEF mass model was developed using combinatorial geometry methodology. While

graphics programs are available that use geometry model descriptions in this format to aid in de-

bugging, and such a graphic program was used to help de-bug the LDEF model, the graphics

programs that can be interfaced with combinatorial geometry models are generally of limited

capability. Therefore, the combinatorial geometry description of LDEF was translated into a

different format so that it could be used as input to the CADrays program /31/, which is an

extension of the AutoCAD graphics package and was written by SAIC (for NASA/MSFC) for

modeling the International Space Station. Pictures of the CADrays version of the LDEF model are

shown in Fig. 1.

Using the CADrays version of LDEF, some "interferences" were found where geometric

bodies overlapped in error. However, the overlaps were few in number and due to small

dimensioning errors, so previous radiation calculations using the combinatorial geometry model

were not affected. The CADrays program also provides the capability of computing the mass of

the modeled geometric bodies. The calculated masses for geometric bodies comprising the LDEF

model differed, at most, by a few percent from the expected body masses.
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3. Trapped Proton Anisotropy

Measurements of the radioisotope =Na produced by proton bombardment in aluminum tray

clamps at various locations around the LDEF spacecraft/32/, together with the fact that LDEF's

orientation was very stable during the mission, provide data for checking the accuracy of current

models for predicting the directionality of. the trapped proton flux. Preliminary results of

model/data comparisons for the tray clamp activation have been published previously /6,9,19/.

Given here are results from recent calculations using two model/parameter revisions: a different

trapped proton model and a different set of atmospheric scale heights. An overview of the

calculational method is shown in Fig. 2.

Previous calculations were made using the standard AP8 trapped proton flux model/33/.

Recently, Daly and Evans /34/ of the European Space Agency (ESA) have incorporated an

improved interpolation method into the AP8 model. A comparison of the LDEF tray clamp

activation using these two flux models is shown in Fig. 3. In both cases, the MSFC anisotropy

model/35/is used to predict the proton angular distribution. The ESA version of the AP8 model

gives activation predictions that are about 30% higher than the standard AP8 model and in better

agreement with the magnitude of the measured activation. Using the ratio of activation on the west

(trailing) edge of LDEF to the east (leading) edge activation as a measure of the trapped proton

anisotropy from Fig. 3, the measured anisotropy is about 1.6 compared to a predicted anisotropy

of about 1.3. Averaged over all directions, the standard AP8 model predictions are 53% of the

measured activation, and predictions using the ESA version of AP8 are 68% of the measured

activation (Fig. 4).

To further investigate the sensitivity of the predictions to model/parameter assumptions,

calculations for a different set of effective proton scale heights were made. Following Watts, et al.

/35/, scale heights for initial calculations were based on atmospheric scale heights from the

MSFC/J70 atmospheric model/36/with "correction factors" from Heckman and Nakano /37/ then

applied to get the effective (trajectory averaged) proton scale height. These proton scale heights,

denoted as baseline values, are plotted in Fig. 5. As pointed out by Kern /38/, these estimated

proton scale heights are substantially higher than some published values, such as those measured

by Heckman and Brady/39/. Fits to the Heckman and Brady scale heights (denoted as revised

values) are also shown in Fig. 5. The scale heights used at various times during the LDEF mission

are given in Table 2.

Results using these revised scale heights, together with other calculational cases, are shown

in Fig. 6 as curves A through F, and the corresponding model/parameter assumptions are

summarized in Table 3. Curve A is from initial scoping calculations/19/where the trapped proton

6



__x LDEF Tray F2

periment PO006

Fig. 1. CADrays version of LDEF satellite 3-D mass model with expanded view of Tray F2.
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Table 2. Scale heights used at different LDEF altitudes

Mission Flux

Case Day Altitude (km) Model F10.7 Alpha
478.7 AP8MIN
478.7 AP8MAX

475.8 AP8MIN

469.1 AP8MIN
466.2 AP8MIN

466.2 AP8MAX
461.5 AP8MIN
461.5 AP8MAX

449.5 AP8MIN
449.5 AP8MAX

433.6 AP8MIN
433.6 AP8MAX

412.8 AP8MAX

388.8 AP8MAX

368.0 AP8MAX

319.4 AP8MAX

95 0.241
95 0.241

67 0.000

67 0.000
87 0.172

87 0.172
118 0.440

118 0.440

158 0.784
158 0.784

171 0.897
171 0.897

183 1.000

183 1.000
183 1.000

183 1.000

1A 0
1B 0

2 300

3 1000
4A 1300

4B 1300
5A 1500

5B 1500

6A 1700
6B 1700

7A 1800
7B 1800

8 1900

9 2000
10 2050

11 2105

Proton Scale Height (km)
"Baseline" (a) Revised (b)

116.6
127.2

115.7

113.7
112.8

123.4
111.4

122.0

108.0

118.5

103.6
114.0

108.4

102.3
97.2

86.4

66.84
91.59

66.35

65.21
64.73

89.40
63.95

88.58

62.01
86.54

59.53
83.91

80.59

76.91
73.87

67.21

Ratio:

Reused/
Baseline

0.57
0.72

0.57

0.57
0.57

0.72
0.57

0.73

0.57
0.73

0.57
0.74

0.74

0.75

0.76

0.78

(a) Based on MSFC/J70 atmospheric model/36/for density scale heights with Heckman and Nakano /37/ corrections
for effective proton scale height
(b) Based on Heckman and Brady/39/proton scale heights

Table 3. Model and parameter assumptions for tray clamp activation calculations.

Trapped
Calculational Proton Solar Scale Geometry

Case Model Cycle Altitude Heights Model Comments

A AP8 Solar Max 450 km Baseline Slab

B AP8 LDEF Av. LDEF Av. Baseline Detailed 3-D

C AP8 LDEF Av. LDEF Av. Baseline Hollow Cylinder

D AP8 LDEF Av. LDEF Av. Baseline Slab

E AP8 LDEF Av. LDEF Av. Baseline 3-D

F AP8/ESA Mod LDEF Av. LDEF Av. Baseline 3-D

G AP8/ESA MOd LDEF Av. LDEF Av. Revised 3-D

Initial scoping calculations

Baseline case

Check on 3-D geometry model

Flux incident from exterior only,to check contribution from "streaming"

Influence of trapped proton model

Influence of scale height assumptions
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environment (solar maximum) at a single altitude (450 km, corresponding approximately to the

LDEF insertion altitude) was used and a semi-infinite slab geometry of aluminum was assumed for

the LDEF spacecraft. For case B, the 3-D LDEF mass model and properly averaged trapped

proton exposure (taking into account the LDEF altitude profile and interpolating between solar

maximum and solar minimum using the F10.7 solar flux, as described in/18/) were used. This

more accurate modeling procedure gives results that are considerably lower in magnitude and less

directional than observed. As a check on the geometry model, a "hollow-cylinder" geometry was

used (case C) in which all of the LDEF mass was placed (homogeneously) in a cylindrical

geometry having an outer radius corresponding to the average outer radius of the spacecraft and an

inner radius corresponding to the average depth of the experiment trays on LDEF. These results

are in good agreement with the detailed geometry (case B), indicating that in the calculations there

is a significant contribution to the tray clamp activation from protons streaming through the low-

mass interior of the spacecraft and contributing to the activation while escaping the spacecraft in an

outward direction. To check this, the activation was calculated for the 3-D geometry model

considering only protons incident from directions exterior to the spacecraft (case D). As expected,

case D shows more directionality, and is in good agreement with a calculation using a semi-infinite

slab geometry (case E). (A comparison of the two semi-infinite slab cases, curves E and A, shows

the effect of using the average exposure for the LDEF mission compared to the exposure at

insertion.) Curve F is for the ESA version of AP8 and baseline scale heights (same curve as

shown previously in Fig. 3), and curve G is for the ESA model and the revised set of scale heights

listed in Table 2. The predicted activations using the revised scale heights are about 10% higher

near west directions and about 10% lower near east directions compared to the baseline scale

heights. The anisotropy in terms of west/east activation for predictions using the revised scale

heights is 1.5, which can be compared with the ratios stated earlier of 1.3 for predictions using the

baseline scale heights and 1.6 for the measurements. Therefore, the revised scale heights give

results that are slightly more directional and in better agreement with the LDEF data.

In considering other modeling factors that influence the accuracy of the model/data

comparisons, we note that the 22Na activation cross section is relatively well-known, with an

uncertainty less that about 15% based on the spread of measured data points in the energy range of

interest here (see/27/). A contribution from secondary particles to the activation would be in the

direction needed to obtain better model/data agreement. However, based on HETC transport code

calculations that were made/7/, which took into account secondary protons and neutrons from

trapped protons as well as the activation from galactic protons and secondary particles, these

contributions were estimated to be less than = 3% of the primary trapped proton activation

calculated here.
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The LDEF tray clamp data is well suited for checking anisotropy modeling since the

measurements cover the complete angular range. However, a partial check of the tray clamp

model/data comparisons can be made using LDEF absorbed dose data° Measurements of the

radiation dose using thermoluminescent dosimeters (TLDs) were made on LDEF at locations near

the trailing (west) and leading (east) sides of the spacecraft and for some cases at similar shielding

depths, as summarized in/13, 17/. The predicted dose anisotropy, in terms of the ratio of trailing-

to-leading edge TLD doses, is about 1.4 for the baseline scale heights compared to the measured

ratio of about 2.4, as discussed in/13/. Thus, the predicted anisotropy is essentially the same for

dose and tray clamp activation (1.4 vs. 1.3) whereas the measured anisotropy is somewhat higher

for dose (2.4) than tray clamp activation (1.6).
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4. Trapped Proton Flux

In addition to checking trapped proton directionality modeling as considered in the previous

section, additional LDEF data (from the activation of metal samples, from fission foils, and dose

measurements) can be utilized to evaluate model predictions of the angle-integrated trapped proton

flux. Such model/data comparisons have been published previously (e.g.,/13/) using the standard

AP8 proton flux model, and example results for several different data sets at the same general

location on LDEF (Experiment P0006, Tray F2) are shown in Fig. 7.

If the ESA version of the AP8 model is used for the trapped proton model, somewhat better

agreement with measurements is obtained than published previously. An example comparison for

the Exp. P0006 data is shown in Fig. 7. These results indicate that for the LDEF mission

parameters the ESA version of the AP8 model underpredicts the flux by about 30% while the

standard AP8 model underpredicts the flux by about 50%. Fig. 7 shows that the model/data ratio

is approximately constant with shielding depth, indicating that is it the magnitude of the model

fluxes that are in error, not the proton energy spectra.

13
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5. LET Spectra

5.1 Introduction

il :

One of the more interesting results from the LDEF radiation dosimetry is the good statistical

accuracy of the measured LET spectra, particularly at high LET (e.g., /40/), and the large

difference between the observed spectra vs. pre-recovery LET predictions. Calculations to remove

some of the simplifying assumptions made for the pre-recovery LET predictions/8/are given in

Appendix A. These calculations include: (a) taking into account shielding effects by using the 3-D

mass model of LDEF, (b) a check on the contribution of projectile fragments - i.e., secondary

particles from nuclear interactions by incident heavy ions in the cosmic ray spectrum, and (c)

evaluation of the contribution from heavy ions due to solar flares during the mission.

With the above improvements to the LET prediction methods, the predicted spectra still

differ significantly from measured spectra, as illustrated in Fig. 8. The divergence of the predicted

and measured spectra at low LET is expected since the plastic detector (CR-39) is not able to detect

short-range proton tracks and the low-LET part of the spectrum is dominated by trapped protons.

(An integral of the predicted LET spectrum of Fig. 8, which is dominated by the trapped proton

contribution at low LET, is in excellent agreement with the predicted absorbed dose from trapped

protons at this position given in/13/.)

In considering the high-LET part of the spectrum, the geomagnetic cutoff for the LDEF

orbit is --- 103 MeV/nucleon (Fig. 9) so incident GCR ions (dominated by Z < 26) contribute mainly

to the LET up to ---103 MeV/(g/cm2), as indicated by the stopping power for Fe in Fig. 10, and this

accounts for the sharp break in the predicted LET curve of Fig. 8. GCR Fe ions can contribute at

higher LET as they slow down in thick portions of the spacecraft/payload shielding before reaching

the detector, and this accounts for the predicted flux spectrum of Fig. 8 in the LET range from = 2

x 103 to the maximum stopping power of 4 x 104 MeW(g/cm 2) for Fe ions in CR-39.

Therefore, the flux of heavy ions in the GCR spectrum is too low to account for the flux in

the highest LET portion of the observed spectrum. However, "target fragments" from trapped

protons (not included in the predicted curve of Fig. 8) can contribute in this region, and

calculations of this contribution are described below. These target fragments are the result of

trapped proton nuclear interactions with C and O of the CR-39 (composition : C_2HIsO 7, density :

1.3 g/cm3), and, from the stopping power curves of Fig. 10, can contribute at LET up to about 104

MeW(g/cm2).
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5.2 Target Fragment Contribution to LET

The contribution of ion products from trapped proton nuclear interactions in the CR-39

detectors on LDEF has been calculated using the procedure outlined in Fig. 11. For the LDEF

trapped proton exposure, the mission-average, angular-dependent ("vector") flux spectra (in 720

equal solid angle intervals) was determined using the AP8 flux model/33/, the MSFC anisotropy

model/35/, and the altitude, mission time, and solar cycle averaging procedure described in/18/.

The predictions here are at the position of a layer of thin (lmm) sheets of CR-39 located at a depth

of 6.5 g/cm z in the main detector stack of LDEF experiment P0006 in experiment tray F2. The

LDEF mass model includes a detailed 3-D description of the P0006 detector and tray F2

components, as described in/29/and indicated earlier in Fig. 1.

The trapped proton spectrum in the CR-39 (Fig. 12) was determined using the trapped

proton environment and shielding model described above and transport calculations using the

straightahead, continuous slowing down proton transport of Burrell/42/. The proton spectrum in

the CR-39 was then used as a source for Monte Carlo transport calculations using the HETC code

/43/. Nuclear collisions in the CR-39 (Fig. 13), and the energy and direction of each particle

produced from collisions, are determined from a Monte Carlo calculation using the intranuclear-

cascade-evaporation nuclear model in the HETC code. Results showing the contributions of

various ions to the LET spectrum are shown in Fig. 14. It is assumed in the calculation that the

CR-39 registers tracks with dE/dx > 6 keV/gm.

As described by Benton, et al./40/, for the data analysis of the reported measurements at

this location on LDEF a coincidence counting procedure was used where an ion track was counted

only if it produces etch pits on adjacent surfaces of two CR-39 sheets. For the measurements of

interest here, the etching procedure used removed a layer of about 8 gm from each CR-39 sheet.

Therefore, to compare with these measurements, in the calculations a fixed reference boundary

within the CR-39 was specified as the original (pre-etch) interface between two sheets. Then each

ion from the Monte Carlo calculations was tested as to whether it crossed planes a distance G/2 gm

on either side of the interface boundary, where G is the total "etch gap". Calculations were made

for varying G values as a sensitivity check, with G = 16 gm corresponding to the etch gap for data

analysis procedure used. Target fragment LET spectra for detection thresholds of G-0 (no etch

gap, corresponding to actual LET spectrum expected) and G = 16 _m are shown in Fig. 15

together with the predicted GCR and trapped proton components for comparison. The sum of the

predicted components are compared with the measured LET spectra in Fig. 16.

These calculations show that for the LDEF orbit there is a significant contribution at high

LET in CR-39 detectors from target fragments. Furthermore, the target fragment contribution

dominates the spectrum at LET beyond that where GCR ions above the geomagnetic cutoff for the
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Fig. 11. Calculational method used for predicting contribution of target fragments to LET
spectra in CR-39 plastic nuclear track detector on LDEF.
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LDEF orbit cancontribute(-- 2 x 10 3 MeV.cmZ/g, Fig. 15). The calculations also indicate a strong

dependence of the spectrum at high LET on the etching and data analysis methods employed, as

evidence by the curves for different assumed etch gap thicknesses. Predictions for the etch gap

thickness quoted for the measurements (16 _tm) are much lower than the high-LET data (Fig. 16).

The difference between calculated vs. measured LET spectra for target fragments is more than the

factor of two underpredition attributed to the AP8 trapped proton model based on comparisons

with the LDEF activation and absorbed dose data sets.
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ABSTRACT

As part of the program to utilize LDEF data for evaluation and improvement of current

ionizing radiation environment models and related predictive methods for future LEO missions,

calculations have been carried out to compare with the induced radioactivity measured in metal

samples placed on LDEF. The predicted activation is about a factor of two lower than observed,

which is attributed to deficiencies in the AP8 trapped proton model. It is shown that this finding

based on activation sample data is consistent with comparisons made with other LDEF activation

and dose data. Plans for confirming these results utilizing additional LDEF data sets, and plans

for model modifications to improve the agreement with LDEF data, are discussed.

INTRODUCTION

The measured activation of materials on LDEF from radioactivity induced by trapped

proton and cosmic ray environments provides an important data set for checking

*Submitted for publication in Proceedings of Third LDEF Post-Retrieval Symposium; Williamsburg, Virginia,
8-12 Nov. 1993.

**Work supported by NASA Marshall Space Flight Center, Huntsville, Alabama.



theaccuracyof environmentmodelsandassociatedcalculationalmethodsfor predictingthe

activationof spacecraftandpayloadmaterialsin low-Earthorbit. Suchmodelingaccuracy

is of particular interest in radiation backgroundassessmentsand component material

selectionin thedesignof space-basedsensors.

In the present work, predictions have been made to compare with the observed

radioactivity in several metal samples intentionally placed on LDEF as activation

experiments. Model comparisonswith LDEF activation measurementsof spacecraft

components and with thermoluminscent dosimetry (TLD) data have been reported

previously (refs. 1,2). A resultfrom thesepreviousmodel/datacomparisonsis anestimate

of the accuracyof the currentAP8 trappedproton model for low-Earthorbit applications.

Theactivationexperimentsampledataconsideredhereprovideanimportantadditionaldata

set for model comparisonsby allowing a consistencycheck of the different data sets,

previous model/datacomparisons,and previous conclusionsrelated to quantifying the

trappedprotonenvironmentmodelinguncertainties.

The activation experiment samples consisted of the metals nickel, tantalum,

vanadium, indium, and cobalt placedin experimenttrays at various locationson LDEF

(Table 1), with samplesizestypically 2 in. x 2 in. andeither 0.125or 0.25 in. thick (ref.

3). A total of some20 radioisotopeshavebeenmeasuredfrom thesesamples. We have

not madepredictionsto comparewith all of themeasuredradioisotopesfor thefollowing

reasons: First, theprimary objectiveof thepresentcalculationsis to comparewith those

radioisotopeswhich areproducedby primary trappedprotonssothatpreviousconclusions

on the accuracyof theAP8 modelderivedfrom modelcomparisonswith otherLDEF data

canbe checked. Someestimatesare includedhere for isotopesproducedby secondary

neutronsandgalacticcosmicrays,but thecalculationalmethodusedfor theseestimatesis

lessrigorous than than that usedfor the trappedproton producedisotopes. Secondly,the

activationcrosssectionsneededin predictingcertainisotopesarenot adequatelyknownto

provide theprediction accuracyneededin evaluatingtrappedproton model uncertainties.

For thesereasons,the predictedisotopeshere are restricted to the nickel and vanadium

samples.

The modelcomparisonsmadeherewith activationsampledataprovideameasureof

the trapped proton flux model uncertainties, but information on the trapped proton

anisotropy is difficult to interpretfrom thesedatabecausethesamplesareunderdifferent

amountsof shieldingat differentlocations(Table2). Thetray clampactivationdata,which

provideadetailedspatialmappingandaremostly freeof shieldingeffects,providea better

datasetfor anisotropymodelevaluations,asaddressedin ref. 2.
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The activationmodeling approachhasbeento perform detailedcalculationssothat

differencesbetweenthepredictedandmeasuredactivationscanbeattributedto uncertainties
in the incidentradiationenvironment.Thus,asdescribedbelow,predictionsarebasedona

detailed treatment of the trapped proton environment (taking into account proton

anisotropy, flux altitude dependencewith missiontime, and solarcycle dependence)and

radiationtransportusingadetailed3-D massmodelof theLDEF spacecraftandexperiment

traysto accountfor shieldingeffects.

PREDICTION METHODS

Radiation Environment -- The LDEF trapped proton exposure predicted by Watts, et

al. (ref. 4) is used, which is based on: the AP8 omnidirectional flux model (ref. 5), the

anisotropy model of Watts, et al. (ref. 6) to obtain directionality of the incident flux

spectrum, a detailed altitude dependence during the LDEF mission, and an interpolation of

the solar minimum (AP8MIN) and solar maximum (AP8MAX) versions of the AP8 model

according to the F10.7 cm. solar flux to account for solar cycle variations of the proton

flux during the mission. For incident galactic protons, the LDEF orbit-average exposure

from ref. 7 was used, which is based on the interplanetary spectrum of Adams (ref. 8).

Shielding Model -- The 3-D mass model developed for LDEF radiation analyses (ref.

9) was used. This model was extended for the present calculations to incorporate each of

the activation samples -- i.e., the actual size and location of all of the individual activation

samples were included in the shielding model.

Radiation Transport -- For incident trapped protons, radiation transport calculations

were made using the Burrell primary proton transport code (ref. 10) and the 3-D mass

model of LDEF with the activation samples included. At each spatial point in the activation

samples where flux spectra were calculated, an angular grid of 720 equal solid angle bins

around the point was def'med, with a different energy spectrum incident in each solid angle

to account for the trapped proton directionality. For examining activation produced by

incident galactic protons, particle spectra (primary protons, secondary neutrons and

protons) from previous (ref. 7) Monte Carlo (HETC code) transport calculations for a

simple geometry model (1-D slab of aluminum) were used. Thus, the activation estimates

from the galactic environment is approximate due to the geometry simplification, but, as

discussed above, the trapped proton activation is the main interest here.

Radioisotope Production -- Flux spectra calculated at the center of each activation

sample were folded with measured activation cross sections (shown later) compiled from

the literature to compute radioisotope production as a function of time during the mission,



with decayratesthenappliedto obtaintheradioactivityat LDEF recovery. (As acheckon

theapproximationof usingtheflux only at thecenter of the sample, volume-average fluxes

from a fine grid of flux points were computed for several samples and compared with the

single point flux; the resulting activations agreed to within about 10% or less).

PREDICTED VS. MEASURED SAMPLE ACTIVATION

A summary of the LDEF activation sample measurement results is given in Table 3.

Final data analyses and intercomparisons of measurements at different facilities have not yet

been completed for all of the isotopes produced (ref. 11), so the data shown here are

preliminary at present.

Vanadium Activation

Activation data for the vanadium sample are well suited for model comparisons

because: vanadium has a single target isotope (99.75% 51V) and a single measured

radioisotope (46Sc), so the production mode is well defined for predictions; the activation

cross section is well known (Fig. 1); and the energy threshold for 46Sc production is

relatively low (_- 30 MeV), so the production is almost all (-- 96%) from incident primary

trapped protons rather than from secondaries or galactic cosmic rays.

A comparison of the measured and calculated 46Sc activation for the vanadium

samples is shown in Fig. 2. Both the measured and calculated activities indicate only a

small dependence on sample locations, suggesting that differences that might be expected

due to the trapped proton anisotropy are masked by differences in shielding (Table 2). The

average ratio of predicted to measured activity for samples at all locations is 0.49 + 0.11.

Nickel Activation

Predictions for the nickel sample activation are not as simple as for vanadium because

there are various production modes (Table 4), requiring a large number of activation cross

sections (e.g., Fig. 3 for proton induced reactions), and secondary neutrons are important

in producing some of the isotopes. A comparison of predicted vs. measured activities for

the nickel sample in Exp. P0006 (Fig. 4) shows that trapped protons dominate the

production of 54Mn and 56Co, but neutrons dominate the 58Co and 60Co production, and

cosmic rays dominate the 46Sc production due to its high energy threshold. The calculated

and measured activities for nickel samples at all locations are compared in Table 5. The



averageratio of predicted-to-measuredactivities for the two isotopes(54Mnand 56Co)

producedby primary trappedprotonsfor all samplesis 0.56 + = 0.08.

Solar Minimum vs. Solar Maximum Activation

Since LDEF exposure to trapped protons during the early part of the mission was at

solar minimum and during the latter part at solar maximum (Fig. 5), activities for long vs.

short half-life isotopes can be used to investigate uncertainty differences in the solar

minimum (AP8MIN) vs. solar maximum (AP8MAX) trapped proton models. For

example, Fig. 6 shows the case of arelatively short half-life product (46Sc from V sample

in Exp. P0006, 84 day half-life). Two curves are shown: the production rate vs. mission

time, and the contribution of the production at times during the mission to the activity at

recovery, which shows that the recovery activity for this isotope is due to proton exposure

during solar maximum. The predicted-to-measured activity ratio in this case is 0.49 +

0.11. For a long half-life isotope where the activity is at recovery due exposure during

solar minimum, we use the 54Mn activity (half-life = 303 days) for the same nickel sample

in Exp. P0006, for which the predicted/measured ratio is 0.60 + 0.12. Therefore, from

comparisons with LDEF activation data we find no major difference in the AP8MIN vs.

AP8MAX model uncertainties.

MODEL COMPARISONS wrI'H OTHER LDEF RADIATION DATA

The above comparisons of predicted vs. measured activities for the activation samples

placed on LDEF indicate that the AP8 model underpredicts the trapped proton flux for the

LDEF mission by about a factor of two. This result is consistent with model comparisons

with other LDEF data, as summarized below.

Figure 7 compares predicted and measured 22Na production in the aluminum clamps

holding the experiment trays on LDEF, which has been published previously (ref. 2). The

average predicted/measured activation around the spacecraft is 0.55 + about 0.15 (Fig. 7).

This ratio is in agreement with dose predictions that have been compared (ref. 1) with TLD

doses measured on LDEF (ref. 12) at shielding depths where the dose is due to trapped

protons.

Figure 8 summarizes predicted vs. measured results for three different sets of data

(tray clamp activity, TLD dose, and radioisotopes in activation samples) at the same

location on LDEF (Exp. P0006 in Tray F2). These results show that the model/data



comparisons are consistent for the different data sets and that the predictions are about a

factor of two lower than all of the data sets.

Another data set suitable for including in the comparisons of Fig. 8 is the fission

tracks measured from fission foils (181Ta, 209Bi, 232Th, and 238U) included in Exp.

P0006 (ref. 13). While these foils respond to protons and neutrons from both trapped and

galactic proton sources, an estimate based on particle spectra from 1-D Monte Carlo

calculations (ref. 7) shows that the energy dependence of the fission cross section for the

Bi foil is such that fission tracks are produced predominately by trapped protons. Detailed

calculations taking into account 3-D shielding effects have not yet been made to compare

with these data.

Preliminary comparisons of predicted vs. measured activation of the steel tmnnions

on LDEF, which indicate somewhat better agreement than determined here for the

activation samples, have been reported (ref. 14). However, this early work was of a

scoping nature and several approximations were made in the predictions (e.g., the current

estimate, ref. 4, of the trapped proton environment for LDEF was not available at that

time), so these early trunnion activation calculations need to be revised before definitive

trunnion data comparisons can be obtained.

SUMMARY

The predictions made here for the activation of metal samples placed on LDEF

confirm results from previous comparisons with spacecraft component (tray clamp)

activation data and TLD dosimetry data that radiation effects measured on LDEF that are

due to the trapped proton environment are underpredicted by about a factor of two. These

results indicate that the AP8 trapped proton model underpredicts the actual environment by

a factor of two. Additional calculations to compare with other data sets (trunnion activation

and fission foil measurements) are planned to further check this conclusion.

An investigation of model improvements that would give better agreement with the

LDEF data is also planned. For example, predicted vs. measured differences for the

trapped proton anisotropy is likely due to the approximate nature of the effective

atmospheric scale heights currently used as input to the anisotropy model, and work to

determine more accurate effective scale height estimates is planned. Also, recent work at

the European Space Agency (ESA), ref. 15, shows that improvement to some of the

numerical interpolation procedures used in the AP8 model increases the predicted trapped

proton flux for low-Earth orbits, and comparisons with LDEF data using the ESA version

of the AP8 model are planned.
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Table 1. Location of activation samples on LDEF.

Contained Exp. Tray

in Exp. No. Tray Position

P0006 F2 Trailing Side

A0114 C9 Leading Side

A0114 C3 Trailing Side

M0001 H12 Space End

M0002 G 12 Earth End

Activation Samples

Ni V Ta In

Co Ta In

Ni V

Co Ni V Ta In

Co Ni V Ta In

Table 2. Vertical shielding for activation samples.

Sample

Vertical shielding (g/cm 2) of activation sample in LDEF experiment tray:

H-12 G-12 C-3 C-9 F-2

V thermal 2.8

cover

Ni thermal 2.8

cover

Co thermal
cover

Ta thermal 8.0

cover

In thermal 8.0

cover

1.7 13

1.7 13

: 1.7 13

1.7 13

1.7 13

9



Table3. Summaryof LDEF activation sample measurements - preliminary.

Activation

Sample

Nickel

Tantalum

Vanadium

Indium

Product

Isotope

Sc-46

Mn-54

Co-56

Co-57

Co-58

Co-60

Lu-172

Lu- 173

Hf-175

Ta-182

Sc-46

Rh-102

Ag-110m

Sn-113

In-114m

Mn-54

Co-56

Co-57

Co-58

Co-60

Cobalt

Tray H12
(space end)

Exp. MOO01
Activity

(pCilk9) Ref.

52 + 7.8 (c)

72 ± 3.6 (d)

66 + 28 (c)

70 ± 2.6 (d)

400 + 7.2 (C)

395 ± 15 (d)
73 :I: 3.4 (d)

7.6 + 3.4 (d)

9.0 + 0.87 (g)

12 + 7.8 (c)

56 + 2.1 (h)

120 ± 9.8 (h)

38 ± 5.7 (h)

116± 8.1 (h)

21 ± 6.0 (b)

13 ± 1.7 (g)

2.2 ± 0.6 (a)

3.2± 0.8 (a)i

35 ± 4.2 (a)

190 ± 115 (a)

204 ± 20 (g)

Tray G12 Tray C9 Tray C3

(Earth end) (leading side) (trailing side)

Exp. M0002 Exp. A0114 Exp. A0114

Activity Activity Activity

(pCi/kg) Ref. (pCi/kg) Ref. (pCi/kg) Ref.

11 -,- 4 (c)

25 ± 3.4 (e) l 68 ± 6 (c)

39 ± 8 (C)

29± 4.8 (e) 61 ± 9 (c)

62±27 (c)

403± 35 (e) 466± 18 (c)

399 ± 23 (C)

62± 7.3 (e) 59 ± 11 (c)

93 ± 17 (c)

40 ± 1 (h)

171 + 12 (h)

19 ± 2 (h)

45 ± 4 (h)

16 ± 1.3 (b) 20 ± 1.5 (b)

1 6 ± 1.4 (e) 24 + 2.0 (h)

19.5 ± 1 1 (c)

2.3 ± 0.3 (a) 3.2± 0.4 (a)

2.3 ± 0.3 (a) 3.9 + 0.5 (a)

21 ± 1.2 (a) 41 ± 2.7 (a)

22+ 3.8 (e) 47 ± 19 (c)

z5± 15 (a_ 55± 35 (a)

91 ± 3.8 (e) 41 ± 1.1 (a)

62 ± 1.4 (f)

22 ± 3.8 (e)

303 ± 5.4 (e) 125± 1.6 (a)

211 ± 1.6 (f)

118± 20 (e)
26± 2.2 (e) 19± 0.5 (a)

23 ± 0.8 (f) 27 ± 2.7 (g)

11 ± 4 (c)

75 ± 2 (h)

143 ± 5 (h)

39 ± 2 (h)

38 ± 2 (h)

Tray F2
(trailingside)

EXp. Poo06
Activity

(pCi/kg) Ref

1.6± 0.4 (a)
(a)27 ± 0.9

33± 1.3

67± 16

322 ± 2

360 ± 24

42 ± 1.6

69± 11

4.7 ± 0.3

47± 1

36 + 1.1

91±4

161 ± 8.3

25¢2

37 ± 1.9

135± 4

90 ± 2.3

17+ 1.1

21 ± 2.7

2.2 + 0.9

5.1± 1.0

54 ± 3.6

(a)

(c)
(a)

(¢)
(a)
(c)
(a)

(a) I.BL measurements (Smith and Hurley, ref. 16)

(b) SRL meas=enents (Wi,'=, ref. 17)

(c) MSFC/EKU measurements (Laird, ref. 18))

(d) Battelle measurements (from Laird, ref. 18)

(h)

(a)
(h)
(a)
(h):

(a)
(h)

(al

(a)
(c)

(a)
(a)

(a)

lO5 ± 20 (a)

(e) [2,NL measurements (Camp, from Harmon, ref. 19)

(f) I.BI. measurements (Smith and Hurley, from Harmon, ref. 19)

(g) Battelle measurements (Reaves, ref. 20)

(h) JSC measurements (D. Lindstrom, ref. 21)
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Table 4. Production modes for nickel activation products.

Production Production Production

Product Half-life by Protons by Neutrons by Decay

Sc-46 83.8 days

Mn-54 303 days

Ni-58 (p,Sp5n) Se-46

Ni-60 (p,SpTn) Sc-46

Ni-58 (p,4pln) Mn-54

Ni-60 (p,4p3n) Mn-54

Co-56 77 days Ni-58 (p,2pln) Co-56 Ni-58(p,p2n)Ni-56
F.C :> Co-56Ni-60 (p,2p3n) Co-56 6.1d

Co-57 270 days Ni-58 (p,2p) Co-57 Ni-58 (n,np) Co-57

Ni-60 (p,2p2n) Co-57

Co-58 71.3 days Ni-60 (p,2pn) Co-58 Ni-58 (n,p) Co-58

Co-60 5.26 years Ni-62 (p,2pn) Co-60 Ni-60 (n,p) Co-60

Ni-58(p,pn)Ni-57
Ec.I_- Co-57
36hr _

Co-58m _ Co-58g

Co-60mI_ Co-60g

Table 5. Ratio of predicted-to-measured activity at recovery for nickel activation samples.

Sample Location on LDEF

Isotope

Sc-46

Mn-54

Co-56

Co-57

Co-58

Co-60

Exp. P0006 Exp. A0114

0.29

0.62 0.34

0.44 0.69

0.46 0.48

0.53 0.70

0.84 0.50

Exp. M0002 Exp. M0001

0.58 0.38

0.78 0.64

0.46 0.63

0.44 0.57

AVERAGE: 0.53 0.54 0.57

Average for all isotopes in all samples: 0.55 + = 0.1

0.55

Data Sources: Harmon (NASA MSFC)

Laird (EKU)
Smith and Hurley (LBL)
Camp (LLNL)

Reeves (PNWL)
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ABSTRACT

The linear energy transfer (LET) spectra measured by plastic (CR-39) detectors in

Exp. P0006 on LDEF are much higher at high LET than expected from methods commonly

used to predict LET spectra produced by the space ionizing radiation environment. This

discrepancy is being investigated by examining modeling approximations used in the

predictions, and some interim results are presented.

INTRODUCTION

The P0006 Experiment on LDEF (ref. 1) contained plastic detectors (CR-39) for

measuring linear energy transfer (LET) spectra. Analyses of these data reported to date,

Benton, et al. (ref. 2), show observed spectra that are quite different than expected from

commonly-used LET prediction methods. Since LET spectra are fundamental in predicting

a variety of radiation effects of practical importance (e.g., biological damage, electronics

upsets) in spacecraft and mission design, it is important to investigate the reason for this

discrepancy, and reported here are some interim results of such work.

The problem addressed is illustrated by Fig. 1. Shown here is the measured LET

spectrum (ref. 2) in one of the CR-39 sheets located 6.5 g/cm 2 from the space end of the

main detector stack in the P0006 experiment. Also shown is a pre-recovery LET prediction

made by Derrickson (ref. 3) using the NRL CREME code of Adams (ref. 4), which is

commonly used for predicting LET spectra in performing assessments of space radiation

effects on microelectronics. Since this pre-recovery prediction was of a scoping nature to

*Submitted for publication in Proceedings of Third LDEF Post-Retrieval Symposium; Williamsburg,

Virginia, 8-12 Nov. 1993.

**Work supported by NASA Marshall Space Flight Center, Huntsville, Alabama.



obtain a quick estimate,severalapproximationswereinvolved -- e.g.: (a) the spacecraft

anddetector shielding is approximatedasan aluminum sphere, (b) the calculatedLET

spectraare for silicon, whereasthe CR-39datahavebeenconvertedto LET in water, (c)

thecalculatedspectraarefor the spaceenvironmentat theLDEF insertionaltitudeand not

averagedover theLDEF mission,and(d) thecalculationneglectsthe effectsof secondary

particles created in the detector and spacecraft,including both "projectile fragments"

(secondariesfrom the breakupof incident ions during nuclear collisions) and "target

fragments"(residualnuclei and secondaryparticlesfrom collisions with detectormaterial

nuclei). Discussed below are calculations which remove some (but not all) of the

approximationsin thepre-recoveryLET predictions.

LET PREDICTIONS

ShieldingEffects

Sinceadetailed3-D massmodelof theLDEF spacecraft,experimenttray F2 contents

containingtheP0006experiment,andtheP0006detectorstackhasbeendeveloped(ref. 5)

for LDEF radiationanalyses,theeffectsof shieldingon theLET spectrapredictionscanbe

treatedaccurately.Therefore,theLET spectrumatapoint in thecenterof theCR-39layer

correspondingto the locationof themeasuredspectrumhasbeencalculatedusingtheLDEF

3-D shieldingmodel. Radiationtransportcalculationswere madefor shieldingin eachof

720 solid anglebins aroundthedetectorpoint. A simplified representationof theshielding

distribution is shownin Fig. 2. The transportcalculationsalongeachshieldingdirection

were madeusing the Burrell transportcode(ref. 6) for incident trappedprotonsand the

CREMEcode(ref. 4) for galacticprotonsandheavyions. TheLDEF exposureto trapped

protons predicted by Watts, et al. (ref. 7) was used, which takes into account the trapped

proton anisotropy as well as altitude and solar cycle variations during the LDEF mission.

Incident galactic cosmic ray spectra for the LDEF orbit were calculated using the CREME

code. Average galactic spectra over LDEF altitude and solar cycle variations were

computed, but the average results are not significantly different from the solar minimum

spectra at the LDEF insertion altitude assumed in the pre-recovery predictions, as illustrated

in Fig. 3 for protons. The LET spectrum in water is calculated to correspond to the data, as

opposed to LET in silicon for the pre-recovery prediction of Fig. 1.

Results from this calculation are compared with measurements in Fig. 4. There is

some improvement compared to Fig. 1 when shielding effects are taken into account, but

the large difference for the high-LET "tail" (>_. 1500 MeV • cm2/g) still exists. The



difference at low LET (_.<300MeV • cm2/g) is understandablebecauseof the inherent

insensitivity of CR-39 at low LET and becauseof the particular etching processused.

Thus,theCR-39 hasvery low detectionefficiency for trappedprotons. This is illustrated

in Fig. 5, which is thesameasFig. 4 but indicatesthepredictedtrappedprotonandgalactic

components.

SEPIron Contribution

From measurementsmadeby theHIIS experimentof Adams,et al. on LDEF, it was

found that the large solarenergeticparticle (SEP)eventsduring Oct. 1989madea large

contributionto theobservediron spectrain theenergyrangefrom ----200-800 MeV/nucleon

(ref. 8). Since iron --.350 MeV/n can penetrate the 6.5 g/cm 2 minimum shielding of the

CR-39 layer of interest in Exp. P0006, and since the LET calculations above neglect SEP

events, we have checked the contribution of SEP iron to the LET.

These calculations were made by modifying the CREME code to incorporate the Fe

spectra measured by HHS on LDEF. LET spectra are compared in Fig. 6 with and without

the SEP iron included. These results show that SEP iron makes some contribution at high

LET, but not nearly enough to account for the predicted vs. observed discrepancy in Exp.

P0006.

Contribution of Heavy Ion Fragmentation

To check the contribution at high LET from secondary particles generated when

incident heavy ions breakup into lower-Z ions due to nuclear collisions, the UPROP code

of Letaw (ref. 9) was used. This code accounts for the production and subsequent

transport of all secondary particles from ion breakup in nuclear collisions. The results of

this calculation (made for a spherical aluminum shield) show that, even for the case of

rather thick shielding (50 g/cm2), the secondaries from ion fragmentation do not

significantly increase the LET spectrum (Fig. 7).

SUMMARY

The LET calculations described above remove some of the approximations made in

initial, pre-recovery predictions, but they do not explain the large difference at high LET

between predictions and measured spectra for Exp. P0006. The calculations to date have

not taken into account target nuclei fragments and elastic recoils from nuclear collisions



producedby trappedprotons,which is suspectedasbeingthemostlikely causeof the large

underpredictionat highLET.
To account for the effects of nuclear interaction products from trapped proton

collisions with the CR-39constituents, a moredetailedradiation transportcalculation is

required than possible with the codesusedfor the abovepredictions. A calculational

approachfor accuratelysimulating the CR-39 measurementsis under development,but

resultsarenot yet available. Theapproachconsistsof two stepsin theradiationtransport:

First, the trappedprotonflux in thedetectoris computedusingastandardproton transport

code (e.g., ref. 6) and the 3-D LDEF spacecraft/detectormodel. This procedure,which

hasbeenusedextensivelyfor doseandactivationpredictionsto comparewith LDEF data

(e.g., ref. 10), takes into accountthe trappedproton directionality and accurately treats

shielding effects. In the secondstep,the proton flux in the CR-39 layer is usedas the

sourcefor a 3-D Monte Carlo transportwithin thedosimeter. A modified version of the

HETC code (ref. 11) canbeusedfor theMonte Carlocalculationto takeinto accountthe

productionandtransportof nuclearrecoilsandsecondaryparticlesin thedetectorre,on.
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